\qquad

Section 13.3-Section 13.5 Review

Brief Summary of 13.3-13.5 (see full summaries at the end of each section in the course textbook.)

- The dot product of $\boldsymbol{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\boldsymbol{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ is: \qquad .
- Let \mathbf{v} and \mathbf{w} be two vectors, and θ the angle between them. State the relation that relates $\mathbf{v} \cdot \mathbf{w}$ to θ.
- The cross product of vectors $\boldsymbol{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\boldsymbol{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ is the vector: $\boldsymbol{v} \times \boldsymbol{w}$ given by:
- The equation of the plane passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=\langle a, b, c\rangle$ is:
vector form: $\mathbf{n} \cdot\langle x, y, z\rangle=d$
scalar form: $a x+b y+c z=d$ where $d=$ \qquad .

Section 13.3 Additional Exercises

1. Find $\mathbf{v} \cdot \mathbf{e}$ where $\|\mathbf{v}\|=3$, \mathbf{e} is a unit vector, and the angle between \mathbf{e} and \mathbf{v} is $\frac{2 \pi}{3}$.
2. Show that if \mathbf{e} and \mathbf{f} are unit vectors such that $\|\mathbf{e}+\mathbf{f}\|=\frac{3}{2}$, then $\|\mathbf{e}-\mathbf{f}\|=\frac{\sqrt{7}}{2}$.

Section 13.4 Additional Exercises

1. Which of the following form a right-handed system in the figure below?
(a) $\{\mathbf{v}, \mathbf{w}, \mathbf{u}\}$ (b) $\{\mathbf{w}, \mathbf{v}, \mathbf{u}\}$ (c) $\{\mathbf{v}, \mathbf{u}, \mathbf{w}\}$
(d) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ (e) $\{\mathbf{w}, \mathbf{v}, \mathbf{- u}\}$ (f) $\{\mathbf{v}, \mathbf{-} \mathbf{u}, \mathbf{w}\}$

2. Calculate $\boldsymbol{v} \times \boldsymbol{w}$ with $\boldsymbol{v}=\langle 1,2,1\rangle$ and $\boldsymbol{w}=\langle 3,1,1\rangle$.

Section 13.5 Additional Exercises

The figure below might be helpful in completing exercises 3-5

FIGURE 9 By definition, the angle between two planes is the angle between their normal vectors.

1. Find an equation of the plane passing through $P=(2,-1,4), Q=(1,1,1)$, and $R=(3,1,-2)$.
2. Find an equation of the plane that passes through $P=(4,1,9)$ and is parallel to $x+y+z=3$.
3. Find an equation of a plane making an angle of $\frac{\pi}{2}$ with the plane $3 x+y-4 z=2$.
4. Find a plane that is perpendicular to the two planes $x+y=3$ and $x+2 y-z=4$.
5. Let L denote the intersection of the planes $x-y-z=1$ and $2 x+3 y+z=2$. Find the parametric equations for the line L.
